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1 Introduction

The simplest possible coaxial window geometry has a dielectric material inserted between
coaxial metal cylinders, which extend undisturbed beyond the ends of the window, as shown
in figure 1. The dielectric reduces the impedance of the line, so some form of impedance
match is required.

r(outer)

r(inner)

Figure 1: Coaxial window geometry

One approach is to use a two-step quarter-wave match, from a high (~ 50) impedance
line to low (~ 5) impedance window. This is simple, compact, and leaves the region in the
vicinity of the window undisturbed from the form shown in figure 1.

Scaling laws provide an incentive to make a high power window as large as possible, since
(at constant [, at least) losses scale inversely with radius, and both heat flux and temperature
rise scale inversely with the radius squared. One phenomenon that limits how large a window
can be made is the presence of higher order modes in the structure. Conventional wisdom is
to limit the average circumference to one wavelength, so that these modes cannot propagate.



This rule makes sense, and the derivation below will confirm it for the vacuum section of
the line. Applying that rule to the dielectric loaded section of the line is too conservative.
While the dielectric can trap modes below the cutoff frequency of the vacuum line, those
narrow band resonances can be computed (analytically) and placed away from frequencies
of operation.

2 HOM Math

As discussed in Langmuir[1], modes of a coaxial line have a radial variation given by
R(r) = ApJy(kr) + B,N(kr) .

The TM boundary conditions at » = r; and r = r, give
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and the corresponding conditions for TE waves are
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Figure 2: Bessel function ratios

When r; is within a factor of 2 of r,, the family of modes with the lowest cutoff frequencies
are TE modes. These have k. = n/r,, where n is the azimuthal quantum number, and
rqe & (r; +75)/2, but 7, really has a weak dependence on both n and r,/r;.
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Figure 3: Normalized transverse separation constants

The fact that small values of k can apply to even closely spaced conductors (r; & r,) is
possibly surprising. Inspection of a graph of the above Bessel function ratios (figure 2, in
which the TE,, curves show N/ (z)/J!(x), and the TM,, curves show N, (z)/J,(z) ) makes it
clear how this can work. The peaks in the TE style curves represent cases where two closely
spaced x values can have the same f(z). This arrangement does not happen with the TM
curves. Representing such solutions (f(kr;) = f(kr,)) of these graphs in terms of o = r,/r;
gives us the curves in figure 3.

Treat a section of dielectric of length [ in a coaxial line with inner radius r; and outer
radius 7,, as depicted in figure 1. Consider behavior at angular frequency w, for which the
free-space propagation constant is kg = w/¢, and the corresponding unguided propagation
constant in a medium of dielectric constant is k. = /eky. Assume ko < k, < k., so HOMs
don’t propagate in the e = 1 section, but do propagate inside the dielectric. Then the wave
equation’s solution has z dependence sin k;z and /or cos k1 z in the dielectric, and e*% in the
adjoining vacuum. The separation constants satisfy k¥ = k? — k? and a? = k? — k2.

If we match H, and dH,/dz on the dielectric-vacuum boundaries z = 4-[/2, and take the
cos z style solution in the dielectric, then we get relations

{
cosk1§ =A

—k'l sin I{Il% = —aA.

Eliminating A from these equations, we get the condition for resonance

a
l="tan"'—.
Bk



Note that the multi-valued nature of tan—! gives a whole class of solutions, separated by  in
the arctangent. Changing from cos (even) solutions to sin (odd) solutions produces solutions
that are spaced /2 from the first set. Combine this with the relations

1
ki = T—\/etQ—n2
a
1
a=—vVn?—1t2
Ta

where ¢t = wr,/c. A suitably normalized form of the result is

l 2 - n? — t? P
— = ———— | tan —+m—=] ,
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where m is the longitudinal quantum number. This relation is displayed in figure 4. It is
clear that trapped (resonant) modes can only exist if the normalized frequency t satisfies

n/ye<t<n.
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Figure 4: Normalized resonant frequencies for e = 10

3 Example

The preceding math may seem a little abstract and opaque, so here is an example that may
clarify the implications.



If we work with Al,O3 ceramic that has ¢ = 10, and the window assembly fits in a
traditional 502 line, a magic value of a = r,/r; for the window region is 1.30, because the
601In o = 15.8 €2 vacuum line impedance can be used as a quarter-wave matching section to
the 60/+/€ - Ina = 512 dielectric loaded section.

Suppose a window is needed for 700 MHz. To get a reasonable extinction length for
HOMs, we should choose 7, somewhat less than the critical value of ¢/27f = 6.82cm.
Capriciously choosing a value of 20 cm for the extinction length, we derive a value of 6.45 cm
for r,. Thus the normalized frequency ¢ in the section above is 0.947.

Solving for r; and r, in terms of r, = (r; +7,)/2 and a = 7, /r;, we get r; = 2r,/(1+ ) =
5.61cm and r, = 7.30 cm.

Inserting all these parameters to find [ for various modes gives as set of lengths to avoid
for the window. For n = 1 modes, the first two lengths to avoid are 0.52 and 7.71 cm. The
first n = 2 mode will line up with the operation frequency if the window length is 3.88 cm.

Suppose the window is made 3.0 cm long, which normalizes to [/r, = 0.456. Although the
equation for [/r, is not analytically invertible, it is easy to solve for the resonant frequency
numerically, and get t = 0.641, or 474 MHz. The field pattern for this mode, and and the
next two lowest frequency modes, are shown in figure 5. With a loop probe some distance
away from the window, these modes could presumably be excited on purpose. The )y of
such trapped modes would be a useful low power indicator of window losses.
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Figure 5: Longitudinal H, dependence of resonant modes discussed in the example
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